
–Independent Work Report Spring,2014–

cgame: A rapid game development tool

Nikhilesh Sigatapu

sigatapu@princeton.edu

advised by

Adam Finkelstein

Abstract

cgame is a 2d game engine and editor built with rapid game development in mind. Its

design has been driven by four key concepts: entity-system architecture, persistence of data,

real-time logic editing through scripting and real-time data editing through an in-game edi-

tor. All aspects of cgame, from sprite rendering and physics to GUI, abide by these concepts

in both interface and implementation, which provides for a consistency that enables rapid

game development.

1 Introduction

Rapid game development is useful as a prototyping and experimental tool before game pro-

duction. For small independent teams of game developers, it may in fact be the long-term

production strategy. Often the impediment to experimentation with new gameplay ideas is

the risk associated with production time. Rapid game development tools remove this risk

and allow quick testing of concepts, even by small teams or just one developer, and thus

facilitate innovation. ‘Game jam’ events that center around rapid game development, such

as Ludum Dare and Global Game Jam [12, 10], have recently risen in popularity and could



be seen as promoting collaborative learning [20]. The most successful tools in such compe-

titions are often ones that foster rapid development through a visual editor, such as Game

Maker or Unity [6, 16].

Games, in very general terms, consist of two parts. One is the game state, with all data

answering questions such as “Where is the player?” “How difficult is this monster?” “What

is the color of the floor?” The other is the game logic, which reads the current state and

writes back to it or writes output (such as drawing or sound) in response to events such as

“SPACE key pressed,” “advance frame by 0.02 seconds.” Rapid development of a game thus

requires the ability to edit both game state and logic with instant feedback. cgame provides

game state changes through the in-game editor and game logic changes through scripting.

Both allow changes while the game is running and provide immediate feedback. cgame’s

entity-system model (section 2.1) spans over both sides of this divide — defining data in

terms of entities and their properties, and event handling logic in terms of systems — while

also providing persistence of data.

2 Concepts

2.1 Entity-system architecture

An entity is a dynamic object in a game that has associated data and must be operated on

when events occur. For example, a monster is an entity because it stores properties such

as health and difficulty, and every frame it must be drawn to screen and have its position,

rotation be updated by the physics engine. The entity data and event model in cgame is an

entity-system architecture.

This is different from the object-centric model where there is a single structure for each

object that stores all its data and is the focal point of event handling. Instead, in the entity-

system model each entity is identified by a unique primary key, and data for each entity is

split across various systems. This is similar to data storage in a relational database. Each

2



system handles different aspects of an entity — for example in cgame there is a transform

system that handles position and rotation, a sprite system that handles rendering enti-

ties as sprites, a physics system for rigid body dynamics and collision detection and so on.

Entities are entered into systems if they must acquire that aspect. So the monster entity

described earlier would have an entry in the transform system for its position and rotation,

one in the sprite system for its image description, all related by having the same primary

key. Systems expose interfaces for updating public properties associated with entities. For

example, calling transform_set_position(3, (1,7)) sets the position of the entity with pri-

mary key 3 to (1,7). In cgame the primary keys are called ids and are non-negative integers.

Event processing is split the same way data storage is. Each system is notified of events

such as ‘draw a frame’ or ‘key pressed.’ It then processes its entities accordingly, often having

to communicate with other systems to get the job done. For example, the physics system

reads positions from the transform system, computes updated positions, and writes the new

positions back to the transform system using its public interface. The sprite system reads

positions and rotations from the transform system to figure out where to render sprites on

screen. Thus there is an indirect data flow from the physics system to the sprite system,

neither of which knows the other exists.

The entity-system model allows dynamically mixing functionality into entities. Say you

have a monster type in a game that moves but does not shoot, and one that shoots but does

not move. In the next level of the game you want to add a monster that does both — move

and shoot. Ideally, the logic would be split across systems. There would be a system moves

that moves its entities around, and a shoots system that has them shoot bullets. The move-

only monster would just be in the moves system, the shoot-only one just in the shoots system,

and the monster that does both would be in both.

Figure 1 is an illustration of this splitting of data, where the monster has id 3. The rows

in the figure show the properties stored by the system per entity. The moves system stores

move speed, shoots stores firing rate and transform stores position and rotation.

3



Figure 1: Splitting data into moves, shoots and transform systems

While processing per frame, the moves system would read the old position, compute the

new one and write it to transform. The shoots system would read the position and rotation

from transform to shoot (possibly by creating new bullet entities with this initial position

and rotation). Figure 2 illustrates this data flow.

Figure 2: Data flow between moves, shoots and transform systems

Entities can be added to or removed from systems dynamically, so a monster can be made

to stop moving by simply removing it from the moves system or made to stop shooting by

removing it from shoots. The moves system only requires its entities to also be in transform,

and is thus in fact completely independent of whether its entities are meant to be monsters

or not. A ‘friendly’ non-player character could also be added to the moves system and enjoy

the same motion logic while presumably not being in the shoots system and not hurting

the player. Complex entity logic can thus be built by piecing together abstract primitive

behaviors that do not assume much of their entities.

4



2.2 Persistence

Entity data in cgame can be saved to a buffer and loaded back. Buffers can be in-memory

or on disk. Each system handles the saving and loading of its data separately, in a format

that makes sense for that system. Thus the buffer reflects closely the layout of the data

as it is in memory: the data is split by system and relies on ids for identifying entity data

across systems. When loaded back, the relationships between data in the various systems

are restored simply because of consistency of ids. Returning to the previous example of a

moving and shooting monster, the moves system would save a speed of 4 for id 3 and shoots

would save a rate of 0.5 for id 3. Upon loading back we would load a monster with a speed

of 4 and a rate of 0.5 because of having the same id in both the moves and shoots systems

for the loaded entries.

Invariance under relabeling

Note that it isn’t necessary for the loaded id to be exactly equal to the original value. The

entity-system model relies only on having equal ids across entries referring to the same

entity, and is not concerned with the actual value of the id itself. Whatever new id is selected

must be repeated everywhere the original id was mentioned. So in the above example, on

loading it is acceptable for the moves system to have an id of 7 for the speed entry of this

monster as long as the shoots system also uses an id 7 for its entry (and all other references

to this id, say in the properties of other entities, use the id 7 too). The game state in cgame

is thus invariant under relabeling of ids. Given an id x and an unused id y, replacing all

mentions of id x with y in the cgame world does not change the mechanics of the game.

Merging

Loading entity data is not destructive — existing entities are preserved, and entities in the

buffer are loaded in as new entities beside the existing ones. Thus it is possible to merge

a buffer with the current state of the game. On merging, it may be that an entity already

5



exists in the current game state with an id equal to the id about to be loaded. This would

cause a clash in ids if the saved id was loaded naively.

To tackle this issue, cgame generates new ids for every id that is loaded, and stores a map

of loaded id to new id while loading. We start with a map M that is initially empty. On

loading an id value x, we check if it is already in the map. If not, we generate a new id

y, set M[x] to y, and use y for the loaded id. If it is in fact already in the map, we have

seen this id before while loading, so we just use the existing value M[x] for the loaded id.

A new map is used for every load call — entities cannot reference each other across buffers

(they inhabit ‘different worlds’). This mapped load algorithm has the effect of consistently

relabeling every loaded id. As noted before, the game state is invariant under relabeling,

and so this successfully merges the saved game state with the current game state.

Filtering

On saving to a buffer, it is possible to filter to certain entities only. For example, filtering to

only the id 3 in the above example would save just the moving, shooting monster (with all of

its property data across moves, shoots and other systems it is in). This single monster can

then be merged back into any game state.

Merging and filtering together allow for various useful functionality. For example, entities

can be duplicated by filtering only to those entities, saving them to an in-memory buffer

and then merging the buffer back into the game state. Entity configurations can be saved

as prefabs (‘prefabricated’ entity configuration templates) by filtering to those entities and

saving to a file on disk. Now entities with that configuration can be created repeatedly by

merging the disk buffer into the scene. So we could create a ‘hard and fast’ monster preset

with a high moves speed and shoots fire rate and save it to a file. A monster with this preset

can then be created whenever required by merging in from the file.

6



2.3 Scriptability

The entity property examples seen so far are simple values — numbers or vectors, which

are themselves composed of numbers. It is often desirable to have game logic be a property

in itself. A flexible way to store logic as data is by writing it in a scripting language and

interpreting the code on the fly. For example, a trigger system that performs an action

whenever the player touches one of its entities could store a property ‘script’ which is the

string of script to run when a touch event occurs. If all system interfaces are exposed to

script and it can manipulate data types such as vectors and strings, arbitrary logic can be

written in the scripting language. The interpreted nature of scripting languages also allows

for iterative development and testing of game logic at run time without having to exit and

re-compile the game.

cgame’s core systems and data structures are written in C and have a C API, but they

are also all exposed to Lua, an interpreted scripting language. Scripts need not just be data

properties — in cgame entire systems can be written in pure script. Some built-in systems

in cgame such as edit (the in-game editor) and group are written in script. cgame also

comes with two example systems, rotator and oscillator (which rotate and oscillate their

entities respectively) that are written entirely in script. This is the preferred approach for

writing systems, resorting to C only due to performance reasons or for lower-level access

than what the cgame API provides. For example, the input system, which provides func-

tionality to check for key presses and mouse motion, is itself written in C because it must

build on the underlying C input API.

Game logic can be modified at run-time through scripting. While testing the game, exist-

ing system code written in script can be edited and re-interpreted with immediate feedback

on the changes. Systems can also be added and removed at run-time. It is thus possible to

even, say, create an entirely new monster type, add it to the later part of the level currently

being played and then test combat, all without exiting the game.

The reflective nature of Lua allows for automatic saving and loading of systems written

7



Figure 3: Setting the background color and printing numbers at run-time through script

in Lua. Enabling automatic save and load for a scripted system is as simple as setting its

auto_saveload flag to true. cgame also provides functionality for defining custom save and

load mechanisms in case they are needed. An example where this would be required is a

name system that allows assigning unique descriptive string names to entities — on loading

it must check for name clashes and resolve them to ensure uniqueness.

2.4 Editability

While running scripts at run-time allows for live editing of property data through the script

interfaces that systems expose, it is desirable to have a more user-friendly interface for

property editing. Often there is a more intuitive alternative to simply typing in numbers

— clicking and dragging to move entities around, for example. Similar to scripting, editing

property data this way should be allowed in real-time and provide immediate feedback.

cgame provides an in-game editor that allows the user to select entities, move and rotate

them visually, edit properties and add and remove entities from systems. Since the editor is

in-game, the result of the edits can be seen while editing the world. The game does not have

8



Figure 4: The cgame editor

to be paused while editing, so that selecting and moving out a physics-enabled block would

cause a block on top of it to fall, or moving a monster’s target would change its trajectory of

motion in real-time.

Figure 4 shows cgame in edit mode with transform and physics inspectors open on the

right for a falling brown box entity. Inspectors are windows that can be opened in the editor

for a given system and entity. They show the property values that the system provides for

that entity and allow editing them. Property editing changes are reflected in real-time, so

that changing the ‘-1.4298’ to a ‘0’ in the transform position field would make the box jump

to the right. Systems can provide their own custom inspector functionality. For example,

the physics system provides an ‘add poly’ button, which when clicked allows the user to

9



visually draw a polygon onto the scene to define the collision shape. For scripted systems,

the inspector automatically ‘discovers’ properties and their data types and creates fields to

edit them. Scripted systems added at run-time are available to be inspected as soon as they

are defined.

The editor has a modal interface, with different modes having different key and mouse

bindings. The user can, for example, switch from the default normal mode to grab mode,

which allows moving the selected entity using arrow keys or motion of the mouse and pro-

vides key bindings for enabling snap to grid. Key and mouse bindings for modes can be

assigned and edited through script. Entire new modes can be added through script too. In

fact, cgame’s edit mode is written mostly in script, including all the default modes and in-

spectors. This allows the user to easily create extensions to the editor for their own systems.

The editor provides functionality for duplicating entities, saving and loading prefabs and

merging scenes, allowing quick development of game levels.

3 Interface

cgame is written as a C program that initializes a game window, OpenGL rendering and core

systems and enters a game loop, handing over high-level control to script. The executable

takes a startup script path as a command line argument. The startup script is run after

initializing all built-in cgame systems and can register script systems for game logic. The

script code can be organized into multiple files and use the Lua require function to handle

loading. Systems can also be written in C and linked with the executable. The following is a

description of the user-facing interface of cgame (here the ‘user’ is one who wishes to develop

a game using cgame), which is mostly comprised of the various systems that entities can be

added to.

10



3.1 Data types

Below is a listing of the types of data used as entity properties. Other than Scalar (which

is just a primitive floating point type), these types are implemented as C structs which are

also visible to and can be manipulated from script. All data types are available under the

cg global in script. For example, cg.Vec2 is constructor for the C Vec2 type in Lua.

• Scalar: A real number. This is equivalent to C’s float.

• Vec2: A 2-dimensional vector. Provides common 2d vector math functions such as

vec2_add(), vec2_sub(), vec2_len() and so on. In script the +, -, . . . operators are over-

loaded for easier notation.

• Mat3: A 3x3 matrix. 3x3 matrices can define affine transformations on a 2d space using

homogeneous coordinates. The transform system exposes entity world transformations

in this form, which can then be fed to shaders for rendering. Provides functions for multi-

plication, creating scaling, rotation and translation matrices and for transforming Vec2s.

• BBox: An axis-aligned bounding box. Represented by a min vector for the minimum x,

y coordinates and a max vector for the maximum x, y coordinates. Provides functions for

merging BBoxes, testing point intersection and transforming by Mat3.

• Color: A color with transparency. Represented by red, green, blue and alpha components.

Common color values are provided as variables such as color_black and color_red.

• Entity: An entity id. Represented as a struct with just an id field. Implemented as a

struct so that it appears as a different type from plain numbers in script. Provides the

function entity_eq() to test for equality of entity ids.

• KeyCode: Represents a key on the keyboard. Possible values are enumerated in input.h.

• MouseCode: Represents a mouse button. Possible values are enumerated in input.h.

Where relevant the data structures have been laid out in memory so they can be passed

to OpenGL directly. So a Vec2 has the same memory layout as a GLfloat[2].

11



3.2 Built-in systems

Most built-in systems in cgame are implemented in C and some in script. The script inter-

face to systems is the same irrespective of whether they are implemented in C or script, so

the implementation is effectively abstracted away. All systems are accessible from script

under the cs global. For example, the transform_set_position() C function is accessible

as cs.transform.set_position() in script.

Some of the systems such as texture and timing described below are not strictly systems

in the ‘entity-system’ sense, since they cannot have entities be added to them. However,

they are still listed here since they listen for events and the interface to their functionality

is the same as for other systems.

3.2.1 entity

Provides functions entity_create(), entity_destroy() for creating and destroying enti-

ties. When an entity is created it is in no systems except entity. When an entity is de-

stroyed it is removed from all systems. Systems must, on every _update_all() event, look

for destroyed entities using the entity_destroyed() function and remove those entities

from themselves. All entities are always in the entity system.

3.2.2 group

Allows assigning ‘groups’ to entities. Each entity can be in multiple groups. Group names

are strings with no spaces, which makes it easy to pass in multiple groups to group functions

using a space-separated string. Provides functions to destroy or filter saving to entities in a

given set of groups. Newly created entities are automatically added to the group “default”.

Built-in entities such as the console GUI and the editor GUI are not in group “default”, so

the game level except built-in entities can be saved by filtering to the “default” group.

Splitting entities into various group subsets such as “monsters”, “background” and so on

allows fine-tuned selection of entities to save or destroy. The group system is not meant to

12



be used for any actual game logic, however — the proper way to iterate through all monsters

and move them around is to define a monster system which then exposes monster-specific

properties.

3.2.3 transform

Stores position, rotation and scale of entities. Provides functions to translate and rotate

entities. Using the transform_set_parent() function an entity can be set as a child of an

other, which means it inherits the parent transform. The transformations are applied in the

order of scaling, rotation, then position from the child to the parent, all the way to the root.

This allows the formation of a scene graph of entities. Also provides utility functions such

as for getting the world matrix of an entity or for transforming a point from local to world

position.

3.2.4 camera

Entities in this system can function as viewports into the world to render from. They are in

transform and so can be positioned, rotated and scaled. The viewport height can be set and

the width is set automatically to match the aspect ratio of the window. Of all entities in the

camera system at most one can be set as the current camera, which is the one through which

the world is viewed. The current camera can be switched at any time. If there is no current

camera the default viewport is a 2x2 box centered at (0,0) in world coordinates. The camera

system also provides utility functions for converting between world and screen coordinates.

3.2.5 sprite

Renders entities to the game world as sprites. Sprite images are taken from a single atlas

image. Each entity in sprite has texcell and texsize properties, which describe the rect-

angle in the atlas file to render in pixel units. The size property specifies the size in world

units. Sprites also have a depth property for back-to-front ordering of sprites — sprites with

13



a lower depth value are drawn on top.

3.2.6 gui and friends

The gui, gui_event, gui_rect, gui_text, gui_textedit, gui_textbox, gui_checkbox and

gui_window systems provide various GUI functionality for entities. All GUI entities are

in the gui system which provides common attributes such as color, alignment and padding

and manages keyboard focus. Positions are controlled by the transform system which allows

creating a tree of GUI elements — gui_rect elements can contain other GUI elements which

may themselves be gui_rects containing more elements. All GUI elements ultimately have

the current camera as a parent so they preserve screen-space position.

The GUI alignment system allows entities to have any combination of left, middle, right

or top, middle, bottom alignment along either axes, or even not have any alignment on a

particular axis and provide manual positioning. GUI elements can also be table aligned on

either axis, which places the elements one after the other with padding in between. All man-

ual GUI positions and sizes are specified in pixels. This allows the GUI to look consistent

under resizing of the window.

The following GUI element types are available, each as a separate system that entities

can be added to:

• gui_rect: A rectangular container of other GUI elements. All containers elements must

be in this system to handle alignment of children properly. Supports fill and fit mode on

both axes — fill mode maximizes the size while still being contained in the parent and fit

mode minimizes the size while still containing all children.

• gui_text: Renders a string of text. Currently cgame text objects simply use the built-in

font found in data/font1.png, which is a grid of character images in ASCII order.

• gui_textedit: An editable text box. Entities in this system are also added to gui_text

for rendering the text content. Elements can be set to be numerical fields, which validates

that the input can be interpreted as a Scalar.

14



• gui_textbox: A convenience system for text elements with a rectangle around them.

Elements are added to gui_rect and a gui_text child is created.

• gui_checkbox: An input field for boolean values. Shows a ‘yes’ or ‘no’ text and exposes

functions to set/get the value. The value is toggled when clicked.

• gui_window: A window with a body and a title bar containing close and minimize but-

tons and title text. The system exposes a method to get the body gui_rect to add child

elements to the window.

Keyboard events are directed to the GUI element that is currently focused. At most one

GUI element can have focus. Focus can be assigned by selection with the mouse or directed

using the gui_set_focus() function. The gui_has_focus() function returns whether any

element has focus at all, which is useful to check if a keyboard event should be handled by

game logic (to avoid, say, moving a game character when arrow keys are pressed to edit a

gui_text element).

Event states can be polled using the ‘gui_event_...()’ functions. The polled state reflects

the current frame. For example, ‘gui_event_changed()’ is true for a gui_textedit element

if and only if its value was changed in that frame. Keyboard events can be polled this way

too. Event states are usually checked by systems as part of ‘_update_all()’ events.

The gui_event system is written in script and can be used to assign callbacks to GUI

events for easier handling. Defining a key event callback for an element is as simple as

assigning a script function to the key_down property of the gui_event system for it. This

function can be an anonymous one defined in-place.

3.2.7 physics

The physics system controls an entity’s transform, subjecting it to forces such as gravity

and collisions. It provides various physical properties such as velocity and mass and pro-

vides functions for the application of forces and torques. physics entities can be dynamic

(movement subject to forces, collisions), kinematic (moved manually by setting transform,

15



not by forces) or static (never move). The collision structure of a physics entity can be

composed of multiple shapes. Each shape is either a circle or an arbitrary convex polygon.

Concave polygons can be constructed by composing multiple convex polygons together. The

system also provides facilities for getting the list of entities colliding with a given entity and

for querying the nearest entity to a given point.

The system adds special functionality to its inspectors that allows adding shapes and

drawing polygons visually. Figure 5 shows a convex polygon (red edges and vertices) being

drawn to add to the blue object.

Figure 5: Drawing a convex physics shape in phypoly mode

16



3.2.8 prefab

A prefab is a saved reusable entity configuration — set of systems an entity is in along

with all property data. The prefab system provides facilities to save entities as prefabs and

instantiate saved prefabs into the game world.

3.2.9 script

The script system is a C system that forwards all received events to the script world. The

only relevant functions for a game developer using cgame are script_run_string() and

script_run_file() which can be used to run a string of script or a script file respectively.

3.2.10 timing

Allows pausing game time or changing time scale (to speed up or slow down the game by

any factor). In system ‘_update_all()’ events the timing_dt variable gives the elapsed time

since the last ‘_update_all()’ event. This value is zero if the game is paused and is based on

the time scale otherwise. The timing_true_dt variable gives the actual elapsed time since

the last frame independent of pausing and scale.

3.2.11 input

Provides functions for polling current state of keyboard keys and mouse buttons. Also allows

registering C function callbacks for keyboard and mouse events. This includes a ‘character

callback’ event which gives the Unicode number of the character pressed.

3.2.12 texture

Provides functions for loading image files as textures. These textures can then be used by

calling texture_bind() which binds the texture to the target of the current OpenGL texture

unit. This system is used by sprite to load the atlas and gui_text to load the font. The

texture system automatically reloads images at run time when they are modified.

17



3.2.13 console

cgame displays a text console at the top of the window for debug output. The console_puts()

and console_printf() functions can be used to print text to the console. In script the de-

fault print function also writes to the console. The visibility of the console can be set using

console_set_visible().

3.2.14 scratch

Manages the scratch file, which by default is usr/scratch.lua. Whenever this file is modi-

fied it is run as a script. Allows running script on the fly written in any text editor.

3.2.15 edit

The edit system manages the in-game editor, and is implemented in both C and script. The

C part is small and handles edit-specific rendering such as grid lines and bounding boxes.

The system provides functions for turning edit mode on or off and setting the grid size. Each

entity has an editable property in the edit system, which is true by default. Only entities

with this property set to true are editable in edit mode.

The system also provides functions for modifying the bounding box associated with an

entity. Systems that manage entities for which a bounding box makes sense (such as sprite

or camera) can merge in bounding box information. This bounding box is then drawn and

used in the editor for mouse selection.

3.3 Creating systems

C systems are created by writing functions to handle the events and then calling those

functions in the relevant places in system.c.

Script systems are created by adding a table to the cs global table. The table must have

event names as keys and event handler functions as values. The table can be modified any

18



time, so the common idiom in cgame code has been to add a system as an empty table then

add values to it. Below is an example system written in script.

cs.new_system = {}

function cs.new_system.update_all()

print(cs.timing.dt) -- print frame delta time every frame

end

The C EntityPool data structure and the Lua cg.entity_table data structure can be

used to store per-entity data. Both are maps with Entity as the key type and allow any

type of data value. Both provide utilities for saving and loading with merging. In script the

cg.simple_sys and cg.simple_prop utilities can be used to quickly define simple systems

and properties with entity destruction events automatically handled. All of these facilities

together make it quite simple to make systems that operate on entities. For example, be-

low is the code for a rotator system that rotates its entities. The system exposes a speed

property with getters and setters. The system and property are available to be edited in

edit mode and the system supports save/load of entity data with merging — all handled

automatically.

cs.rotator = cg.simple_sys()

cg.simple_prop(cs.rotator, ’speed’, math.pi / 4)

function cs.rotator.unpaused_update(obj)

cs.transform.rotate(obj.ent, obj.speed * cs.timing.dt)

end

Note that systems are created through the same cs global that they are accessed through

and the functions are named the same way in the definition as when called.

19



3.4 Save and load

Saving a buffer in cgame consists in opening a serializer stream, writing to it, then closing

the stream. serializer_open_str() and serializer_open_file() can be used to open an

in-memory and file stream respectively. Both return a pointer to a Serializer structure.

Once done writing, the serializer_close() function must be called. Writing to a stream

usually involves using one of the ‘_save()’ functions defined for the various data types. For

example, vec2_save(v, s) saves the Vec2 at v to stream s. The function works for both

in-memory and file streams, and so the actual destination of the data is abstracted away.

The entity_load() function handles resolution of ids to avoid clashes while merging.

Entire systems expose such functions too. For example, transform_save_all(s) saves

transform system data for all entities to the stream s. The function system_save_all(s)

calls ‘_save_all(s)’ functions on all systems, and thus saves the entire game state to the

stream s. Again, this works irrespective of whether s is an in-memory or a file stream.

Loading works similarly, with deserializer_open_str(), deserializer_open_file() and

deserializer_close() functions, ‘_load(s)’ functions for data types and ‘_load_all(s)’

functions for systems.

Saving and loading of script systems is simpler. Script systems receive a save_all()

event, from which they must return an object of any type in which they store their save

data. On loading, they receive a load_all(d) event, where d is the object returned from the

original save_all() call. If the auto_saveload flag of a system is set to true, these events

are skipped and the script system will save and load data for that system naively, merging

any cg.entity_tables it encounters. For most simple systems this behavior is enough and

there is no need to define custom save/load event handlers.

System ‘_load_all()’ functions merge by default. Existing entity data is not affected.

Replacing the current game state with a saved one would thus involve destroying entities

and then calling the load functions. The entity_set_save_filter() function can be used

for save filtering. If a filter is set to true for any entity then only those entities are saved

20



for which it is set to true. So calling entity_set_save_filter(e, true) filters to just the

entity e. Setting it to false for any entity filters out that entity. Filters are just effective for

one system_save_all() call and are reset after.

4 Implementation

The following is a description of a few salient features of the implementation of cgame.

4.1 C-Lua binding

cgame uses LuaJIT [15] to provide a Lua interpreter. LuaJIT includes an FFI (foreign

function interface) library to call C functions and read C data from Lua. The C symbols

are visible to the FFI library without loading any dynamic libraries because the cgame exe-

cutable produced at the final link stage exports them. However, simply exporting them is not

enough — the FFI library needs type information. To tell LuaJIT about the parameter and

return types of functions and about structure layout the ffi.cdef function must be called

passing in a string of C declaration code [3]. The FFI library parses these C declarations

and makes them available from Lua.

To avoid duplication of function and type declarations across C and Lua code, the cgame

source code uses a little C preprocessor trickery to generate strings from the declarations

in header files. The file script_export.h defines the preprocessor macro SCRIPT() which

evaluates simply to its argument in all files except the file cgame_ffi.h. In this file it eval-

uates to the argument, but also declares a pointer to the stringified version of its argument.

These strings are then concatenated together in script.c and passed as a parameter to an

ffi.cdef call. This allows the script system to bind C functions and types with almost no

extra work. All that is required to add a new C module visible to script is surrounding the

declarations with a SCRIPT() macro invocation and adding the name of the module to the

list in cgame_ffi.h.

21



C data other than numbers is converted to a special Lua cdata type which supports mem-

ber access for structs and indexed access for arrays. cgame uses the ffi-reflect [11] library

for reflection on cdata objects. This is used by the edit-mode inspector windows to detect

types of properties and allowed values for enum types. For C systems all that is needed is a

list of properties (no types), and the inspector will figure the rest out and display the proper

kind of editor for each property.

The cs global is a simple table with a metatable that directs index attempts to the

FFI if not found. This is why it is possible to access script system functions, such as

cs.group.set_groups(), while also being able to access C functions the same way, such

as cs.transform.set_position(). On indexing cs with a name n, if no element was found,

a table is t is returned which on being indexed with a name m returns the C function of

the name n .. “_” .. m (where .. is concatenation). So cs.transform.set_position

evaluates to the C function transform_set_position. However, if an element was found

in the first step (when indexing cs) that element is returned. This way, accessing the

cs.group.set_groups() function involves going through cs.group which is just the group

system table with the member set_groups normally defined.

4.2 Lua serialization

The serpent [13] library is used for automatic serialization of Lua data. A few modifications

were made to allow custom serialization of cdata objects and table types. Utilities are pro-

vided to use C ‘_save()’ and ‘_load()’ functions so that save/load logic for C data types is not

duplicated. Since the Entity type is a struct it is converted to cdata on the Lua side and

can have special serialization logic distinguished from plain numbers. Loading of Entity

values in Lua uses entity_load() which handles resolution of ids for merging.

22



4.3 Entity id generation

Entity ids are generated using a simple counter that counts up starting from zero. Each

time a new id is needed the current counter value is used and the counter is incremented.

Whenever an entity is destroyed its id is marked as unused by pushing onto an unused

id stack. When generating new ids if this unused id stack is nonempty a value is popped

off it rather than incrementing the counter. This is done in an attempt to keep entity ids

relatively dense while keeping each entity’s id constant throughout its lifetime.

4.4 Entity data storage

For C systems the EntityPool data structure is used to store entity data. It implements

a map whose keys are of type Entity and values are structures of any type. The values

are stored contiguous in memory. The data structure implementation has two parts — an

array of values and a map of indices into this array. These two parts are implemented

separately as EntityMap and Array structure types respectively. EntityMap is implemented

as a hash table. For now all ids simply hash to themselves (they are unsigned integers) for

simplicity and because the ids are dense. This could be replaced with a more space-saving

hash function in future with changes in only one file (entitymap.c).

EntityPool provides utilities for easy iteration and save/load. The values are iterated

in the order that they appear in memory. Since they are contiguous this provides cache

efficiency. The contiguous nature of EntityPool data values also makes it simple for systems

such as sprite to pass data to shaders for rendering: they simply use glBufferData() after

having set up the vertex attributes correctly.

The Lua cg.entity_table data structure is implemented as a table that stores a simple

Lua table of id to value underneath. This is because Entity is a LuaJIT cdata type and

does not work as a table key in the expected manner (addresses are compared rather than

actual values — the LuaJIT website page on FFI semantics describes this [4]).

23



4.5 Rendering

cgame uses the GLFW [8] library to open an OpenGL rendering window, GLEW [7] to load

OpenGL extensions and stb_image [14] for image loading. All rendering is performed in a

‘modern’ OpenGL style using vertex buffer objects and glDrawArrays(). gfx.h and gfx.c

contain OpenGL rendering utilities. gfx_create_program() creates an OpenGL shader pro-

gram given vertex, geometry and fragment shader paths. gfx_bind_vertex_attrib() binds

a vertex attribute of a shader program to a field in a structure (assuming the buffer is an

array of instances of these structures).

The vertex data passed in is high-level and the geometry is generated on the GPU. For

example, the sprite system only sends in the world matrix, size, texcell and texsize

properties and no geometry data. The quad to render is generated in the geometry shader.

4.6 Physics

The Chipmunk2D [2] library is used for physics. Static and dynamic bodies are handled

in the default Chipmunk2D way. Kinematic bodies are set to be static and their positions

and velocities are computed each frame by reading from the transform system. This is

done because Chipmunk2D static bodies do not have their velocities updated, which leads

to ineffective physical simulation for kinematic bodies (they do not ‘push’ dynamic bodies

out of their way).

5 Limitations and Future Work

One current issue with cgame is inter-system dependency management. For example, the

sprite system requires its entities to be in transform and adds them to this system (which

has no effect if the entity is already in transform). However, subsequently removing the

entity from transform would cause an error with the sprite system attempting to access

transform properties for this entity. This is especially problematic when attempting to

24



remove an entity from a system in the editor. Instead, there should be some sort of indication

that transform is now a ‘required’ system. A separate question is what should happen when

the entity is removed from sprite: should it now be removed from transform too if it wasn’t

explicitly added and is no longer required to be in transform?

System-specific event management is also a problem. The event notification mechanism

so far has involved polling. gui_event_mouse_down() and physics_get_collisions() are

examples. What if the system that cares about these events is actually updated before the

event value is set for the current frame? This ties back to dependency management — there

is also a graph of dependencies for events.

These issues point to the need for a better way to manage system metadata, including de-

pendencies and events subscribed to. Ideally current system events such as ‘_update_all()’

and ‘_key_down()’ and system-specific events such as gui events or physics collisions would

be subscribed to through the same interface. This would be one of the next steps for cgame

development.

Another issue is save/load version management. Currently saved buffers are unusable

if saved fields are added or removed in C systems. To allow backward compatibility there

must be some way to recognize the version of the buffer and accordingly drop old fields in

the buffer and set new fields in memory to default values.

6 Related Work

The cgame entity-system model was inspired greatly by the blog post series “Entity Systems

are the future of MMOG development” by Adam Martin [19]. However, one fundamental

difference between the entity-system paradigm described in Martin’s article and the one

used in cgame is the existence of ‘components’ in Martin’s model. Components become a

common data store separate from systems, and systems filter on components possessed by

an entity to decide which entities to process. cgame’s model instead has the systems also

25



handle the data storage.

On the one hand, Martin’s model makes it easy to add properties to an entity by just

leveraging the existing component system. On the other hand, it removes the flexibility

of having systems be able to store data in any form they want. For example, the sprite

system sorts sprite data by depth (since it passes this data directly to the shader). It is able

to do this since it deals with the data directly as an EntityPool. With a separate component

model it is unclear how this would work, since it is possible the component model simply

works as a key-value store and has no notion of order. Also, systems often have to store

data besides per-entity data, such as a reverse mapping from group to entities in the group

system. This would have to be stored separately from the components, which would split

the data for save/load and also in terms of organization of code.

Jason Gregory’s book “Game Engine Architecture” [18] devotes an entire section of a chap-

ter (section 14.2) to entity models, which Gregory calls “Runtime Object Model Architec-

tures.” He highlights the issues with class hierarchies in an object-oriented model (14.2.1.3

“Problems with Deep, Wide Hierarchies”) and then describes “Property Centric Architec-

tures,” (section 14.2.2) which are very similar to cgame’s data storage model. He hints that

behavior could be implemented either in the properties themselves or in per-entity scripts,

but does not touch on the subject of systems.

The cgame editor bottom command interface and script extension mechanism (includ-

ing scriptability of key bindings) was inspired by the extensible text editors Vim and GNU

Emacs [17, 9]. The modal nature and key binds are based on Vim and the 3d modeling

tool Blender [1]. The editor inspector interface is based on popular game development tool

Unity [16]. One key difference between cgame and Unity is in the entity model used. Unity

uses a ‘component-based’ system where each entity is a container of component instances

that manage different aspects of the entity. This leads to a different paradigm when writing

game logic. Also, cgame’s save/load system is simpler to use than Unity’s — for script sys-

tems it can generally be handled automatically, and when handled manually most data can

26



still be saved in a straightforward manner since the ‘save_all()’ event is allowed to return

data of any type.

Acknowledgments

I would like to thank my independent work advisor, Adam Finkelstein, for his valuable

guidance in directing the focus of the project. The design of cgame has benefited greatly from

discussion with users on the game development forum at reddit.com [5] and the #ludumdare

channel on irc.afternet.org. I would also like to thank my parents for allowing me the time

to work on my projects when I visit them during breaks.

References
[1] “blender.org - Home of the Blender project - Free and Open 3D Creation Software,” http://www.blender.

org/, [Online; accessed 5-May-2014].
[2] “Chipmunk2D Physics,” https://chipmunk-physics.net/, [Online; accessed 5-May-2014].
[3] “ffi.* API functions,” http://luajit.org/ext_ffi_api.html, [Online; accessed 5-May-2014].
[4] “FFI Semantics,” http://luajit.org/ext_ffi_semantics.html, [Online; accessed 5-May-2014].
[5] “gamedev - game development, programming, math, art, collaboration,” http://www.reddit.com/r/

gamedev, [Online; accessed 6-May-2014].
[6] “GameMaker: Studio | YoYo Games,” https://www.yoyogames.com/studio, [Online; accessed 6-May-

2014].
[7] “GLEW: The OpenGL Extension Wrangler Library,” http://glew.sourceforge.net/, [Online; accessed 5-

May-2014].
[8] “GLFW - An OpenGL Library,” http://www.glfw.org/, [Online; accessed 5-May-2014].
[9] “GNU Emacs - GNU Project - Free Software Foundation (FSF),” http://www.gnu.org/software/emacs/,

[Online; accessed 5-May-2014].
[10] “Home | Global Game Jam,” http://globalgamejam.org/, [Online; accessed 6-May-2014].
[11] “LuaJIT FFI reflection library,” https://github.com/corsix/ffi-reflect, [Online; accessed 5-May-2014].
[12] “Ludum Dare,” http://www.ludumdare.com/compo/, [Online; accessed 6-May-2014].
[13] “Serpent,” https://github.com/pkulchenko/serpent, [Online; accessed 5-May-2014].
[14] “stblib - multiple single-file C/C++ libraries and tests,” https://code.google.com/p/stblib/, [Online; ac-

cessed 5-May-2014].
[15] “The LuaJIT Project,” http://luajit.org/, [Online; accessed 5-May-2014].
[16] “Unity - Game Engine,” http://unity3d.com/, [Online; accessed 5-May-2014].
[17] “welcome home : vim online,” http://www.vim.org/, [Online; accessed 5-May-2014].
[18] J. Gregory, Game Engine Architecture. Taylor & Francis, 2009.
[19] A. Martin, “Entity Systems are the future of MMOG development,” http://t-machine.org/index.php/

2007/09/03/entity-systems-are-the-future-of-mmog-development-part-1/, 2007, [Online; accessed 2-
May-2014].

[20] K. Shin, K. Kaneko, Y. Matsui, K. Mikami, M. Nagaku, T. Nakabayashi, K. Ono, and S. R. Yamane, “Lo-
calizing global game jam: Designing game development for collaborative learning in the social context,”
Lecture Notes in Computer Science, vol. 7624, pp. 117–132, 2012.

27

http://www.blender.org/
http://www.blender.org/
https://chipmunk-physics.net/
http://luajit.org/ext_ffi_api.html
http://luajit.org/ext_ffi_semantics.html
http://www.reddit.com/r/gamedev
http://www.reddit.com/r/gamedev
https://www.yoyogames.com/studio
http://glew.sourceforge.net/
http://www.glfw.org/
http://www.gnu.org/software/emacs/
http://globalgamejam.org/
https://github.com/corsix/ffi-reflect
http://www.ludumdare.com/compo/
https://github.com/pkulchenko/serpent
https://code.google.com/p/stblib/
http://luajit.org/
http://unity3d.com/
http://www.vim.org/
http://t-machine.org/index.php/2007/09/03/entity-systems-are-the-future-of-mmog-development-part-1/
http://t-machine.org/index.php/2007/09/03/entity-systems-are-the-future-of-mmog-development-part-1/

	Introduction
	Concepts
	Entity-system architecture
	Persistence
	Scriptability
	Editability

	Interface
	Data types
	Built-in systems
	entity
	group
	transform
	camera
	sprite
	gui and friends
	physics
	prefab
	script
	timing
	input
	texture
	console
	scratch
	edit

	Creating systems
	Save and load

	Implementation
	C-Lua binding
	Lua serialization
	Entity id generation
	Entity data storage
	Rendering
	Physics

	Limitations and Future Work
	Related Work

